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Abstract-A two-dimensional steady-state laser melting problem is numerically simulated. A vorticity- 
stream function formulation is used to solve momentum equations and a method of selecting the optimum 
relaxation parameter is suggested. Steady-state finite-difference equations are solved by an alternative 
direction implicit (ADZ) scheme using a false transient formulation. A solid and liquid interface is approxi- 
mated by steps. The role of surface tension driven flow on total heat transfer is studied. Comparative 
studies are carried out between conduction and convection results. The flow pattern in the molten pool is 
presented through stream function plots which show the effect of laser power on the size and strength of 
secondary cells. The effect of a secondary cell on the total heat transfer and pool shape is analysed under 

varying laser power. 

1. INTRODUCTION 

LASER melting and solidification has received a lot of 
attention recently due to the improved surface prop- 
erties that can be achieved [l]. Due to rapid sol- 
idification soon after the melting better surface prop- 
erties can be obtained, especially from the point of 
view of wear and corrosion resistances. Moreover, the 
penetration depth, i.e. the depth of the molten pool, 
is small during laser surface treatment because of the 
small time of interaction. This is of great importance 
from the manufacturing point of view where one 
wants to retain the bulk properties of the product the 
same with a thin surface of special properties. Its 
potential has, however, not yet been fully utilized. The 
primary reason is that the basic mechanism governing 
the process has not been fully understood. Anthony 
and Cline [2] did the first quantitative work and pro- 
posed that the flow in the melt was created by the 
surface tension gradient at the free surface. They 
assumed the ilow field was not coupled to the heat 
transfer and studied a one-dimensional model. Hence, 
they did not study the effect of the flow on heat 
transfer. 

Chan et al. [3] considered a two-dimensional tran- 
sient model of laser melting. Movement of the heat 
source was taken into consideration by coordinate 
transformation On the basis of wrong values of latent 
heat of fusion, they neglected the interface energy 
balance because of the low value of latent heat of 
fusion. Quantitative effects of different parameters on 
the surface velocity, surface temperature, pool shape 
and cooling rate were presented. Chan et al.3 work 

[3], however, clearly shows the effect of fluid flow on 
the total heat transfer during laser melting. In the 
subsequent work, Chan et al. [4] analysed a steady- 
state laser melting problem with a stationary beam in 
the cylindrical coordinate system. They validated their 
model by comparing experimental results to that 
obtained from the model. They found that scanning 
velocity plays an insignificant role because of the 
higher magnitude of the surface tension velocity. 
Later, this fact was proved in ref. [5] while analysing 
thermocapillary flow during laser melting. Chan et al. 

[6] analysed laser surface alloying at different cross- 
sections along the workpiece. 

In all the previous studies [3,4,6], a detailed analy- 
sis of the flow in the pool was not carried out. The 
effect of the flow on the total heat transfer was the 
main consideration of all those studies. In this paper, 
a steady-state analysis of the laser melting problem 
is presented. The changes of flow pattern with the 
increasing power of the beam is shown clearly. The 
role of the secondary cell on the heat transfer and, 
subsequently, on the pool shape is analysed. 

2. DEFINITION OF THE PROBLEM 

To develop a mathematical model, the problem is 
physically defined as follows. A laser beam having a 
constant power distribution strikes the surface of the 
material. All of the incident radiation is assumed to 
be absorbed by the material. The heat absorbed 
develops a molten pool. The flow is produced mainly 
due to the surface tension gradient [6]. The surface 
tension gradient is produced by the temperature gradi- 
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NOMENCLATURE 

height of the workpiece [m] 
thermal conductivity w m-l K-‘1 
Marangoni number, 

(d~/dT*)(sro/k)(ro/~a) 
pressure [N m-‘1 
input heat flux [W m-“1 
surface tension Reynolds number, 

(do/dT*)(qro/k)(r~l~v) 
width of the laser beam [m] 
temperature [K] 
characteristic surface tension velocity 

(deldT*)(qr&p) [m s-7 
vertical velocity 
horizontal velocity 
any independent variable 
vertical coordinate 
horizontal coordinate. 

I* dynamic viscosity [N m ’ s -- ‘1 
V kinematic viscosity [m sm2] 

P density [kg m-‘1 
fJ surface tension [N m ‘1 
At false time step or relaxation 

parameter 

3 stream function 
n vorticity. 

Subscripts 
a ambient 

characteristic value 
; liquid 
liq point where the interface intersects a 

reference line 
m melting point 
S solid 
W wall or interface. 

Greek symbols 
u thermal diffusivity [m ss’] 
& convergence criteria 

Superscript 
* dimensional value. 

ent at the free surface. The surface tension gradient 
acts as a shear stress at the surface itself and, thus, 
induces convective flows. The problem is to determine 
the flow pattern, pool shape, free surface temperature 
and velocity distribution at the steady state with the 
increasing power of the beam. The model is shown in 
Fig. 1. 

The following assumptions are made for the present 
model. 

(1) The heat conduction and fluid flow are pri- 
marily in the x- and y-directions. Conduction and 
convection in the z-direction is neglected. This 
assumption is reasonable because of the symmetry of 
the problem. 

I I I /-LASER BEAM 

( yFREE SURFACE 

FIG. 1. Coordinate system. 

(2) All properties of the material are independent 
of temperature except surface tension. 

(3) The surface of the melt is flat. This assumption 
was justified in ref. [5]. 

(4) The laser beam is stationary. Though the laser 
melting process is a moving heat source problem, ref. 
[5] has shown that the quasi-steady-state analysis is 
valid to study the flow pattern. 

(5) The free surface outside the beam is adiabatic. 
(6) The heat flux at the boundary represents the 

net heat input to the material. 

3. MATHEMATICAL FORMULATION 

Using the symmetry, the present problem can be 
mathematically defined by the following governing 
equations and boundary conditions. 

For liquid region 
Energy equation 

Momentum equations 
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Continuity equation Vorticity transport equation 

~+E=o. 
aY* 

For solid region 
Energy equation 

a=T* a2T* 
dx*2+F=o. 

The boundary conditions are as follows : 

at x* = 0, 

-kg = q; 0 G y* d r. 

= 0; r. < y* < w 

au* a0 
U*=O,/.lax*=-7; O<_Y*<y,i 

ay 

aty* =O, 

z’*2c=aT”=o 
ay* ay* ; O<x*<d 

at the interface, u* = v* = 0 and T* = Tz 

atx* = d , T*=T,*; OQy*<w 

aty*=w, T*=T,*; O,<x*<d. 

The initial condition is 

T* = T,*; O<x*<dandO<y*,<w. 

(5) 

(6) 

(7) 

The solid-liquid interface is determined by the melting 
point temperature and no energy balance is required 
at the interface because of steady-state analysis. The 
governing equations are nondimensionalized with the 
following non-dimensional variables : 

T= T*--T,* 
(qro/k) 

U* V* 
* 

u=--; v=~ and p=G. 
UC c PU, 

The characteristic surface tension velocity, U,, can be 
obtained from the order analysis of the free surface 
force balance between the surface tension and shear 
forces [5], and can be expressed as follows : 

u =daqr, 
’ dT* kp’ 

Introducing the dimensionless variables and trans- 
forming the momentum equations to the ‘vorticity 
transport equation’ (i.e. to eliminate the pressure 
gradient terms), the complete mathematical descrip- 
tion of the problem is as follows. 

For liquid region 
Energy equation 

Stream function equation 

*=-@+g). 

Velocities 

u = 2 and 
a* 

aY v= -ax 

The boundary conditions are as follows 

at x = 0, 

-g= 1.0; o<y< 1.0 

= 0; l.O<y$ 

u=o; 0 G Y G Yli, 

a0 
--= -$ ogy<yy,, 
ax 

aty = 0, 

v_aU_!Z=O 
-ay- ay ; 

O<*<? 
r. 

at the interface, u = v = 0 and T = T,,,. 

The vorticity at the free surface is determin using 
boundary conditions (12) and the definition of vor- 
ticity 

(9) 

(10) 

(11) 

(1-a 

i-2(,=0 = g. 

Along the line of symmetry 

as2 
- = 0. 
ay 

(13) 

(14) 

The interface vorticity is determined by assuming the 
interface as a no-slip wall and, therefore, the interface 
vorticity is determined as follows [7] : 

Q= -z& (1% 

Since there is no flow across the system boundary, the 
stream function boundary conditions are 

atx=O,$=O; O<YiYii, 

aty=O,+=O; O~X~X,i, 

\ r I at the interface, $ = 0. (16) 
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For solid region 
Energy equation 

The boundary conditions are as follows : 

(17) 

at x= 0, 
8T 
z = 0; .Yliq < y < ;“, 

1 
d 

atx=-, l-=0; 
YI, 

0 < p < -y 
ru 

(1% 

at y = 0, 
3T 
- = 0; 
;13 

Xliq < x < .“’ 
rn 

I 

at the interface, T = T,, 

The initial condition is 

T=O; O,ix<dandO<y,<IV. 
r0 r. 

(19) 

4. NUMERICAL DESCRIPTION 

The finite-difference form of equations (9)-(11) 
along with the boundary conditions, i.e. equations 
(I2)-(16), for the liquid region and equation (17) 
along with the boundary conditions, i.e. equation 
(18)) are solved by the AD1 method. The steady-state 
problem is soked by the false transient method. 

To start the solution, the pure conduction equation 
has to be solved till a certain molten pool region is 
created so that the momentum (i.e. vorticity trans- 
port) equation can be applied. For the present study, 
the vorticity transport equation is solved when there 
are 30 grids in the molten region. Because of a very 
high Reynolds number, a second-order upwind diff- 
erencing scheme is used to evaluate the convective 
terms of the energy and vorticity equations [6]. The 
diffusion terms of both the energy and vorticity equa- 
tions are evaluated by the central differencing scheme. 

The solid-liquid interface is approximated by steps 
and it is clearly shown in Fig. 2. The interface is 
tracked by the melting point temperature. Since there 
is no role of latent heat of fusion in the steady-state 
problem, a grid point is termed as the interface as 
soon as the temperature of that grid point reaches the 
melting point without any energy balance at that grid 
point, i.e. across the solid-liquid interface. For the 
present study (41 x41) grids are used with step sizes 
of 0.1 in both the X- and Y-directions. 

4.1. Selection of relaxation parameter C$alse time step) 
The selection of the relaxation parameter is one of 

the most impo~ant aspects in any steady-state 
numerical problem. The relaxation parameters or 
false time steps of the present problem in both the 
regions are determined on the basis of the dominant 

iACT~~ BOUNDARY 

FIG. 2. Numerical approximation of the actual interface. 

gove~ing mechanism. In the solid region, thermal 
diffusion is the mode of heat transfer and, hence, 
the false time step is defined on the basis of thermal 
diffusion velocity (a,/r,). On the other hand, con- 
vection is the do~nant mode of heat transfer in the 
liquid region and the characteristic surface tension 
velocity (UC) is used to define the false time step. The 
false time steps in the solid and liquid are selected in 
such a manner that both of them should represent the 
same physical time. On this basis, the relation between 
false time steps in the solid and liquid regions is 

The relative error (i.e. fractional change) criterion is 
used to ascertain whether steady state is reached or 
not. This criterion is defined as 

jys:i <6; WO’” f0 (21) 

where W is any dependent variable and E is a small 
quantity. For the present study the value of F: is 
selected as 0.005. 

4.2. Selection of governing parameters 
From the non-dimensional forms of the governing 

equations (equations (9)-( 1 l)), the non-dimensional 
parameters, governing the present problem, are ident- 
ified as follows : 

R, = Surface tension Reynolds number 

do 4’0 PO =----- 
dT* k pv 

Ma = Marangoni number 

da qro r. Li __-.-- 
dT* k ~TX. 

T, = Non-dimensional melting point. 

The results are obtained for the following three cases. 
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3.0 i 

FIG. 3. Comparison of pool shapes with (41 x41) and 
(81 x 81) grids for R, = 20000.0, Ma = 2000.0 and 

r, = 0.125. 

Case I : Mu = 1000.0 

R, = 10000.0 

T, = 0.25. 

Case II : Ma = 2000.0 

R, = 20000.0 

T, = 0.125. 

Case III : T, = 0.25 (pure conduction). 

For steel, different cases represent the following physi- 
cal values. 

Cases I and III: q = 2.7 x lo8 W m-* 

r0 = 1.0 mm. 

Case II : q = 5.4 x lo8 W me2 

r = l.Omm. 

The values of one relaxation parameter (i.e. false time 
step), for the solid zone, are 

Cases I and III = 0.008 

Case II = 0.004. 

The number of iterations required to reach the steady- 
state solution for different cases are 

Case I = 835 

Case II = 1300 

Case III = 275. 

The number of iterations is highest in case II because 
the value of the relaxation parameter is smallest in 
this case. To stlldy the effect of the grid size on the 
solution, pool shapes for case II with (41 x 41) and 
(8 1 x 8 1) grids are compared and shown in Fig. 3. The 
grid sizes are 0.1 and 0.05 for (41 x 41) and (81 x 81) 
grids, respectively. From Fig. 3 it can be seen that the 
pool shapes are within reasonable accuracy. 

\ ,NrERfAcE 
i 

NO. VALVE Xl& 
7 -1000.00 
2 -3000.00 
3 -7500-00 
4 -13000.00 
5 -1700000 
6 7.50 
7 60.00 

FIG. 4. Streamlines in the molten pool for I(, = 10000.0, 
Ma = 1000.0 and T, = 0.25. 

E VALUE x 106 
I. -16000.00 
2. -13000.00 
3. -10000.00 
L. -7500.00 
5. -5000.00 
6. - 1000.00 
7. 900.00 
8. 750.00 
9. 500.00 

10. 250.00 \ INTERFACE 

FIG. 5. Streamlines in the molten pool for R, = 20000.0, 
Mu = 2000.0 and T, = 0.125. 

5. RESULTS AND DISCUSSION 

The streamlines for different cases (i.e. cases I and 
II) are shown in Figs. 4 and 5. From the streamline 
plots, it can be seen that there is a secondary cell at 
the bottom of the molten pool. The size and strength 
of this cell are larger for R, = 20000.0 than for 
R, = 10 000.0. Reference [5] observed the existence of 
these cells during an analysis of the thermocapillary 
flow in a rectangular cavity. In a rectangular cavity 
secondary cells form because of the corner effect while 
secondary cells exist in the molten pool due to its flat 
shape. The fluid cannot take a sharp turn near the 
bottom of the pool because of its flat shape which 
results in the formation of secondary cells. As can be 
seen from Figs. 4 and 5, the point of deviation of the 
bulk flow from the interface is different for these two 
cases. For case II, the order of magnitude of velocity, 
i.e. the momentum of fluid, is higher than that of case 
I because of the higher power of the beam. As a result, 
the bulk flow for case II deviates at a point which is 
at a lower depth than that for case I and, thereby, 
creates secondary cells of higher size and strength. 

The isotherms for different cases (i.e. I, II and III) 
are shown in Figs. 6-8. The effect of flow on heat 
transfer is clearly seen from these plots. In the presence 
of recirculating flow, heat transfer takes place by both 
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2.9 L 

FIG. 6. Isotherms in the molten pool for R, = 10000.0, 
Ma = 1006.0 and T, = 0.25. 

2.9 

No 
1 
2 
3 
‘ 
5 

6 
7 
6 

INTERFACE 

u 
5.45 
O-LO 
o-35 
5 -3 5 
5.25 

0 20 
D-15 
0 125 

2.9 I 

FIG. 7. Isotherms in the molten pool for & = 20000.0, 
Ma = 2000.0 and T,,, = 0.125. 

0 ‘5 
0 15 
0 39 

0 30 
0 25 

INTERFACE 

2.9 1 

FIG. 8. Isotherms in the molten pool for T, = 0.25 with pure 
conduction. 

conduction and convection. Due to the presence of 
the bulk flow (i.e. primary cell), heat transfer by con- 
duction is opposed by the convection near the line 
of s~metry. Away from the Iine of s~rnet~, heat 
transfer by convection is in the same direction as 
that by conduction. As a result, total heat transfer is 
enhanced along the Y-direction and decreased near 
the line of symmetry because of the bulk flow. On the 
other hand, secondary cells at the bottom of the melt 
modify the heat transfer m~hanism in the opposite 

Table 1. Steady-state melt geometry 

Case No. Width Depth Aspect ratio 

I 1.72 I.14 1.50 
II 2.73 I.84 1.48 

III 1.48 1.32 I.12 
-- - -_. ..- -. -_-...__ .._ _. . _. . ._ _ 

way and enhance the total heat transfer near 
the line of symmetry. For & = 20000.0, this secon- 
dary cell modifies the total heat transfer substanti- 
ally and this can be seen from the last two 

isotherms of Fig. 7. The aspect ratios (width/depth of 
the molten pool) of all the cases are given in Table 1. 
The aspect ratios of cases I and II are more than that 
of case III which is due to pure conduction. This is 
because of the convective heat transfer which makes 
the pool shallower. The aspect ratios of cases I and II 
are almost the same (Table 1). As Reynolds number 
increases, the width of the pool increases because of 
a higher contribution of convective heat transfer due 
to higher orders of magnitude of bulk flow velocity 
(Table 1). On the other hand, the depth of the pool, 
also, increases because the secondary cell of higher 
strength enhances the total heat transfer near the line 
of symmetry (Table 1). As a result, both depth and 
width increase as Reynolds number increases and the 
ratio of width to depth (i.e. aspect ratio) is almost the 
same for both the cases under the present study. 

The non-dimensional free surface temperature dis- 
tributions are shown in Fig. 9. The maximum tem- 
perature occurs at the centre of the beam and 
decreases away from the beam. The maximum surface 
temperature gradient occurs near the edge of the beam 
because of the sudden change in the boundary heat 
transfer. The maximum temperature of case 111 is 
more than that of cases I and II because of more heat 
accumulation due to the absence of convective heat 
transfer. The maximum temperature of case II is lower 
than that of case I because of better mixing in the 
presence of flow of a higher order of magnitude. 

The velocity distribution at the free surface is shown 
in Fig. 10. The velocity at the centre is zero and 
increases away from the centre. The velocity at the 
free surface attains a maximum value at a point where 
the free surface temperature gradient is maximum, i.e. 
near the edge of the beam. This is because of the fact 
that flow is driven by the fret surface temperature 
gradient which induces the surface tension gradient 
there. Although the non-dimensional velocities of case 
I (i.e. R, = 10000.0) are higher than that of case I1 (i.c. 
R, = 20000.0), the dimensional velocities are always 
higher with higher Reynolds numbers. For example, 
the maximum values of maximum velocities for cases 
I and II are 2.0 and 3.0 m s-‘, respectively, using steel 
as the material under study. 

6. CONCLUSION 

The convection occurring due to recirculating ther- 
mocapilla~ Aow dominates the heat transfer process 
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HORIZONTAL DISTANCE 

FIG. 9. Non-dimensional temperature distribution at the top surface for all cases. 

HORIZONTAL DISTANCE 

FIG. 10. Free surface velocity distribution for all cases. 

during laser melting and, hence, modifies the pool 
shape. A secondary eel1 exists at the bottom of the 
molten pool and modifies the total heat transfer pro- 
cess near the line of symmetry at high Reynolds num- 
hers, i.e. with high powered beams. As a result, there 
will be no significant change in the aspect ratio of the 
molten pool when the heat flux incident on the surface 
is increased. 
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ETUDE NUMERIQUE D’UN PROBLEME PERMANENT DE FUSION LASER 

R&m&On simule numeriquement un probl&me bidimensionnel permanent de fusion laser. La for- 
mulation vorticiti-fonction de courant est utilisie pour r&.oudre les iquations de quantitk de mouvement 
et on suggire une mdthode de silection du paramhtre optimal de relaxation. Les tquations aux diffkrences 
finies sont r&solues par un schkma implicite de direction altemee (ADI) qui utilise une formulation 
faussement transitoire. L’interface solide-liquide est approcht par pas. On &udie le rale de la tension 
interfaciale sur le transfert thermique global. Des itudes comparatives sont faites entre les rCsultats de 
conduction et de convection. La configuration d’Bcoulement dans le bain fondu est p&sent&e B travers les 
figures de la fonction de courant, ce qui montre l’effet de la puissance laser sur la taille et l’intensitk des 
cellules secondaires. L’effet d’une cellule secondaire sur le transfert thermique total et sur la forme du bain 

est analysi pour une puissance laser variable. 

NUMERISCHE UNTERSUCHUNG DES STATIONAREN LASER-SCHMELZ- 
VERFAHRENS 

Zusammenfassung-Der zweidimensionale stationHre Laser-Schmelz-Vorgang wurde numerisch simuliert. 
Zur Lasung der Impulsgleichungen wurde ein Ansatz mit der Wirbelstromfunktion verwendet. Eine 
Methode zur Ermittlung des optimalen Relaxationsparameters wird vorgeschlagen. Die Finite-Differenzen- 
Gleichungen fiir den stationlren Fall wurden mit dem impliziten Verfahren der alternierenden Richtungen 
(ADI) geliist. Der Verlauf der Phasengrenze fest/fliissig wurde schrittweise berechnet. Der EinfluB der 
durch Oberllichenspannung hervorgerufenen Strijmung auf den gesamten Wlrmetransport wurde unter- 
sucht. Die Werte der Wlrmeiibertragung durch WLrmeleitung und Konvektion wurden verglichen. Mit 
Bildem des Stramungspotentials wurden die Striimungsmuster im Schmelzbad dargestellt. Dadurch wird 
die Auswirkung der Laserleistung auf die GriiBe und Starke von sekundaren Zellen gezeigt. Der EinfluD 
eines sekundlren Wirbels auf den Gesamtwlrmeiibergang und die Form des Schmelzbades wurde unter 

Veranderung der Laserleistung untersucht. 

gMCJIEHHOE MCCJIEAOBAHHE CTA4BOHAPHOfi 3AAAYII JIA3EPH08 I-IJIABKH 

AeaoTaum-IIposezieHo wicnemoe MonenHposaHHe neyxMepHoii cTaluroHapHofi 3ana48 nasepaol 
ILlIaBLH. YpaBHeHan KOJlU’iecTBa ABHXeHHfl IXmaIOTCX C npHMeHeHHeM COOTHOmeHHR MeXAy 3aBHXPeH- 
HOCTbK)n~YHK~ejiTOKa.npeanOrceHM~On ebldopa OllTHMaTlbHOrO IlapaMeTpa~JlaKCWHH. CTaI@iO- 
HapHbIe KOHeYHOpa3HocTHble YpaBHeHHS ~U,a,OTCn C HCIIOJlb30BaHHeM HenBHOfi CXeMM IIe&X?MeHHMX 

HanpasneHHi. IIpoeonHTcn cryneH9aTan annportcHMamin nosepxHocm pa3Aena May TaepnbrM 
TenOM B XCB(w~OCTblO. PisyuaeTcn BnHfIHHe BbISBaHHOTO IloBepxHocTHbrM HaTnxeHHeM TeYeHHn Ha 

~pO~eCcTe"JIOIle~HOCa.~~Be~eHCpaBHHTe,IbHbI%aH~H3~,'~bTaTOB l',OTeMO~pOBO~OCT~~ KOH- 

BCKIJHH. KapTHHa TeYemn B o6seMe pacnnaBa npencraaneHa B ewe rpa@iKoe arm f$y~KuWi TOKa, 

OTpaXCaIOUl&fX BJEinHHe MOIUHOCTH Jla3epa Ha pa3Mep H HHTeHCHBHOCTb BTOPH‘IHbIX RSeeK. A~aniisti- 

pyeTcn nnH%HHe ~~0pi940ii metiKE Ha cyMMapHbIZi TennonepeHoc H @opuy pacnnana. 


